On being a white dude who teaches science

This weekend, I had the pleasure of participating in my first-ever unconference, titled “Unconference for the Resistance.” It was put on by the fabulous Lake Washington Girls Middle School, whose faculty and students continue to amaze me in their dedication to social justice, top-of-the-notch teaching methodologies, and extraordinary humility about what they are doing in the world.

As a part of the conference, one attender convened a space called a “Men’s Caucus,” where male-identified or presenting teachers could gather to discuss our experiences of teaching with masculine power.  I didn’t realize it until I walked into that room, but I had been craving such a space for years of my teaching career.  As a transmasculine person, I have experienced what it is like to be a teacher that students perceive as a woman and as a man, and I know the pain of being on the other side of what I describe as “masculine capital” – power that men hold in positions of authority with children just because they are seen as men.  This intersects with my race as well; as a white person, I went from being a white woman in the classroom to a white man in the classroom, which was a step from one form of relative power and authority into one with even more power.

After our conversation, there are a few thoughts I’d like to share on my own reflections of how masculine power operates in schools that I’ve worked in.  These are my reflections after sharing space with other men in the caucus, and then gathering with the “Oppressed by Gender Caucus” that met at the same time across the hall.  Many thanks to all who participated and held that space for us to break down some of the ways gender intersects with teaching.

Masculinity, charisma, and what makes a “good teacher” all intersect when a cult of personality forms around a particular person.

Many spaces I’ve worked in, whether they are schools, outdoor education organizations, or communities of faith, have a tendency to pour affection or grandeur on specific teachers based on their ability to work well with kids.  These teachers overwhelmingly tend to be male.  As it turns out, kids are not immune to the ways sexism overvalues masculinity, as is indicated in studies where male teachers are shown to consistently get higher reviews and different descriptors than female teachers… including online classes where the “male teacher” was actually a woman behind the computer screen.

I painfully remember working alongside men in science education who would do little to no rigorous content with their students, accomplish little during the day, and get tons of credit from students and administrators alike for the work that they were doing.  Meanwhile, I was being harassed by my students for being gender non-conforming, trying to squeeze in content that was both rigorous and engaging, and would constantly be questioned by students as to my expertise or competence.  It was total hell.

And now?  Now I work on the other side of that divide.  Strangers who I am meeting for the first time often tell me that I “must be a great teacher,” which can only be a reflection of how they read my personality, race, and gender expression.  Administrators and parents who have never seen me teach gush about my gifts in teaching, while female colleagues’ talents are taken for granted or left unnoticed.  I often sit with this discomfort and am kind of at loose ends about how to wield this power I now have.  I try to spread the word about the awesome projects my female colleagues create, and highlight their hard work and talents for teaching.  I try to use my voice to step in when kids are perpetuating ideas about teachers or students that aren’t based in evidence, but on charisma.  However, since stepping out of the discomfort of never being believed and stepping into this privileged spotlight, I will admit that it is challenging to stay in touch with the experience of what it is like on the other side.

As a white male teacher, my words hold power to white boys that others’ don’t.  This power should never be held lightly.

First off, I want to acknowledge that the experiences of my students are each unique, and when I make generalizations, I am pointing out trends that are not absolute.  In fact, these trends don’t point to any particular student on an individual level, only to larger societal structures that create the conditions for these things to exist and appear as patterns in my instructional space.  That said, there is a tendency in my student body for white boys to walk into my classroom expecting to be comfortable, expecting to have their opinions heard and supported, and to be confident in their own correctness.  This includes moments when those boys’ ideas perpetuate systems of power or put down others seen as inferior, either because they are not perceived as being in the room or because of structural inequality created by sexism, racism, ableism, etc.  This confidence and comfort is not a given for students who aren’t at the center of power, like girls (especially in STEM spaces) or kids of color.

As a white male teacher, I am in a position to challenge that comfort in a way that kids will respect more than if I was seen as female or non-white.  This is troubling, since as a white male teacher, I have the least experience with day-to-day oppression and the ways that can show up in language and action.  It is clear that with the power I carry comes a responsibility for careful listening, self-education, and humbling myself to the reality that I will continue to mess up in trying to push the comfort zones of all white guys in the room, myself included.

The power of an individual and the power of a subject can intersect as well.

Because STEM is connected to masculinity, STEM also holds masculine power.  As a white guy teaching science and computer science, there are so many layers to the intersections of my power in the classroom.  When a history teacher discusses issues of race and social justice, that is something that is expected or taken for granted.  When I talk about issues of race and social justice from a scientific perspective, that seems radical and new.  Moreover, the logic and reason associated with science make my arguments about how race and racism impacts health, well-being, and the history of science seen as more “real” than the “soft” study of history, social studies, or anthropology.

As a trans person, I have the distance from what is considered a “normal boyhood” that could empower me to redefine what creates a healthy development as a boy-identifying child.

This is one topic we talked about a fair amount, and something that I want to pursue further.  When engaging with boys in my classroom, there is a tacit assumption that as a male teacher, I “understand” boyhood from a first-person perspective.  In reality, I never experienced a boyhood – I was assumed to be a girl all throughout my childhood, and was treated through that lens until I was an adult.

While some might consider this distance a weakness (I certainly did in my first year as a male teacher… I was so afraid of saying or doing the wrong thing!!), I would like to frame it as an advantage as a person who teaches boys.  Because I am able to observe boyhood from the outside, I am able to see more clearly the ways in which the practices of raising young men can fail to instill empathy, humility, and a healthy relationship to masculine power than cis men who see those things as “normal.”  I can call out those moments in a safe-r way for boys than other teachers might, since they see me as an ally based on our shared identity as male.

Tangentially to this, one thing I tried to imagine was what a productive all-boys educational space might look like, where boyhood was both celebrated and created in a way that was not destructive to gender diversity or femininity among those students or more broadly.  This is not something I’ve explored deeply & would love any resources you have for thinking about this in the comments/in a private message.  What would/does anti-oppression child-centered single-gender boys’ education look like?  Because the goals of co-education don’t always meet the needs of the boys in my classroom well!  That’s a whole new blog post right there…!

Male teachers need spaces to talk about masculinity and power.

Overall, I left the caucus incredibly grateful for the space and eager to dive into these topics further.  I want to invite other men that I work with to have these kinds of conversations in a way that is productive and allows us to start disentangling the many threads of the web of masculinity and power.

What are your thoughts?  How has gender, perceived or projected, impacted your relationship to teaching?  How can we create a healthy relationship to masculine power with the assumption that sexism exists, persists, and should be dismantled?

Advertisements

Fighting impostor syndrome by providing meaningful feedback

Let’s talk for a minute about impostor syndrome.

For any teacher, this phenomenon will be present to some extent, but in STEM it is especially dangerous for female-identified students and students of color.  There are many responses to impostor syndrome, including creating safe community within your institution for underrepresented groups, discussing the challenges facing those who aren’t well-represented in their chosen fields, and decreasing language that activates stereotype threat.

However, one article I read last year by Beth Andres-Beck stood out in its approach to battling stereotype threat: providing clear, direct feedback that is backed up by concrete evidence.  The author writes about working in various coding environments where insufficient feedback (positive or negative) created a vacuum in which the particular coder could insert whatever self-image they wanted: being the best coder in the world, or conversely, being the least qualified coder of all time.

The trap of impostor syndrome in this scenario is that by choosing to believe that you are an unqualified coder but continuing to work as one creates an urgent need to hide whatever it is that you are doing.  This cycle of perpetuating lack of authentic feedback constructs a fragile identity as an impostor – one that even occasional evaluation can’t break through.

“The genius of imposter syndrome is…we don’t have to disregard when we fall short, for such failures fit our internal narrative.  …When we succeed, we can believe it is part of our act.  Look how well I have fooled everyone by doing work they think is good!  …We have trouble accepting real feedback, since any feedback is based on our facade and we “know” better.  Imposter syndrome also brings with it anxiety and shame, preventing us from feeling the thrill of accomplishment when we do succeed.  It robs us of the joy we earn.”

As a teacher reading the article, it was impossible not to wonder how I create such vacuums of authentic feedback in my own assessments.  And when choosing between the three options of self-concept in an environment with insufficient feedback – good science student, bad science student, and bad science student who everyone believes to be a good science student – it is clear from personal experience that the latter two are usually the perspectives taken by my female students and my students of color.

In response, I am trying to collect tools that will enable me to provide detailed feedback to my students, either from me as a teacher or from peer assessment, that is clear, authentic, and non-threatening.  Below I have listed a few possible strategies – if you have other ideas, please chime in!

  • Frequent formative assessment By using formative assessment probes on a regular basis, students will receive feedback about their own learning in a timely, non-threatening manner.  I highly recommend the work done by Page Keeley on FA in both science and mathematics – her book “Science Formative Assessment” was one of the first texts that got me motivated to become a science teacher.
  • Using detailed rubrics Though writing narrative comments are often more specific and useful, having rubrics that link to the targets for a specific assignment makes it easier for teachers to provide detailed feedback on many assignments in a timely, meaningful manner.  Provide rubrics when the assignment is given (not just at the end) and add specific detail so that students understand the goals set for the assignment.  There are great resources on rubrics at the Buck Institute for Education, which focuses on best practices for Project-Based Learning.
  • Anonymous peer assessment & online discussion The “anonymous” piece of this is incredibly important, when it is feasible.  By creating spaces where students can give feedback to each other/engage with each other without knowing the recipient’s identity, they are less likely to base their comments on their concept of the student receiving the feedback.  Especially given that male students are more likely to be rated as “smart” by their classmates, this is incredibly important to the process for everyone involved.  Anonymous online discussions (see STEMming the confidence gap) are also shown to promote comfort for female students and create parity in male and female participation in discussions.
  • Focus on learning targets Instead of highlighting how smart a student is or their effort, provide feedback specific to the learning targets of the assignment.  Frame your feedback as how the student is or is not meeting the goals of the assignment or unit, and if there is a gap, how it can be successfully bridged by the student.  This is a natural outcropping of standards-based grading, which many schools and districts have adapted more and more to provide more meaningful, learning-focused assessment to students.

What ideas do you have to add to this list?  Other thoughts on fighting impostor syndrome?  Leave them in the comments!

On spatial reasoning & the gender gap in STEM

I’m taking a physics course right now that is reminding me, repeatedly, that I have strong spatial reasoning skills compared with many other people.  Now, I’m not writing this to brag – I’m writing it because it has made this physics class much easier for me than many other students, despite having less formal training in physics than many other students, all of whom are science teachers.  I feel included in the community of the class by virtue of my ability to move shapes in my head, and quickly assign scientific meaning to visual structures both in my head and on paper.

When I was growing up as a female child, my mother knew how much a lack of spatial reasoning set her back in science and math.  She asked my grandmother, one of my primary caretakers as a kid and a retired math teacher, to train me to do spatial reasoning and logic.  We practiced different kinds of puzzles, games, and geometry problems that required my developing brain to manipulate shapes and determine how things worked together spatially.  Though it’s impossible to say for sure, I believe this early training had a huge influence on my spatial abilities as an adult.

Fast forward to today, and research is supporting that practicing spatial reasoning tasks can improve spatial reasoning skills – one of the persistent gaps between men and women in STEM training programs.  I first came across this finding at the Women in STEM Knowledge Center, whose Engineering Inclusive Teaching program provides resources to engineering faculty about creating more inclusive STEM classrooms.  One of their webinars focused on a group of undergraduate engineering students at University of Colorado, Boulder that took a 1-credit spatial reasoning course in their first year in the program.  Before taking the class, 88% of men and 68% of women passed a spatial reasoning pre-test.  After the workshop, that gap closed to 99% of men and 96% of women.  Similar results were seen for international students vs. domestic students: before the class, only 61% of international students passed while 85% of domestic students did.  Afterwards, this closed to 92% vs. 99%.

Turns out this is not an isolated finding.  Many peer-reviewed articles have uncovered similar results: that spatial reasoning is an essential skill in engineering that has a persistent gender gap, but that it is highly teachable.  I love this quote from a KQED piece on the topic:

“Spatial skills are an early indicator of later achievement in mathematics, they “strongly predict” who will pursue STEM careers, and they are more predictive of future creativity and innovation than math scores. In fact, a review of 50 years of research shows that spatial skills have a “robust influence” on STEM domains.

However, women generally score lower than men on tests of spatial reasoning — particularly measures of spatial visualization and mental rotation. Some researchers point to evolution as the culprit, while others have tied the discrepancies to hormone levels or brain structure.  As one researcher put it, “Sex differences in spatial ability are well documented, but poorly understood.”

Sheryl Sorby said she’s not interested in arguing about why the gap exists because training and practice can close it.”

As a trans person and a person assigned female at birth, I too am tired of science trying to put meaning onto a difference between groups as a result of hormones, chromosomes, or evolution when results turn out to be changeable.  Let’s do something about this gap rather than trying to justify it!

I brought this finding up to my physics professor, who was putting himself down for putting a very challenging spatial reasoning question on our mid-term exam.  I suggested that with more practice, more students would have been able to succeed.  Unsurprisingly, his response was initially one of disbelief.  His mindset was based in the idea that spatial reasoning skills are fixed – that “art,” “drawing,” and “visualization” are either talents you are born with, or are doomed to never have.

However, just like in athletics, training has shown to improve students’ spatial reasoning abilities overall. Not all students will become star visualizers, in the same way that not all students will become track stars if they start running every day.  However, we can all become more “fit” in our spatial reasoning through concerted effort and practice.

With these findings in mind, I am trying to collect good websites that have spatial reasoning practice for my students.  At times, I plan to make it required – as Dr. Cheryan pointed out, this is the only way to guarantee equitable impact – but I also plan to have it as an option for kids who are finished with their work to do something that is productive, challenging, and fun.  Have one to add?  Leave it in the comments!

  • 3D logic cube. Match the same-color squares to complete each level.
  • Interlocked – one of my personal favorites.  Rotate pieces, which are partially visible, to unlock the connections between them.  Lots of spatial reasoning here!
  • Tetrical – a 3D tetris game.  Challenging but fun! An easier, untimed version: Puzz3D
  • Blueprint – rotate a blueprint until you find the correct picture.
  • Shape fold – an easy tangrams-like game that involves rotating 2D shapes
  • Shape inlay – ultimate tangrams.  I could play this for hours
  • Fit it quick – mini-tetris
  • Magnets – a game I have already played for hours, and single-handedly helped me decide I shouldn’t be in research, because I found it too tempting by comparison. (Be forewarned, this is more an indication of how much I disliked research than how good the game is… and it’s impossible to get past level 5, as far as I can tell 🙂 )

Not All Fields Created Equal: an evening with Sapna Cheryan, PhD

This evening, I had the pleasure of learning more about the gender gap in STEM from Sapna Cheryan, a researcher at the University of Washington focused on interrogating the STEM fields with the largest gaps in gender parity: computer science, engineering, and physics.  Her talk was sponsored by the Evergreen School and was geared primarily towards K-12 teachers and parents.

Dr. Cheryan focused on two factors that make a particular field unwelcoming to women: masculine culture and insufficient early experience with those particular fields.  The former is a combination of beliefs, norms, structures, and interactions that cause women to feel a lower sense of belonging in a particular institution or field.  The latter focused on ways that early training is biased against equal exposure and skill-building across STEM fields, leading to unequal outcomes.

One of the most striking findings Dr. Cheryan shared had to do with the effect of physical space on how welcomed and interested students were in a particular course.  One study she cited asked high school students about their interest in taking a hypothetical computer science course being offered.  Students in the two experimental groups had the same class described to them – it had a male teacher, met a certain number of times per week, and focused on the same amount and rigor of content.  The only difference between the classes was the physical space the class met in.  One class met in a stereotypically “geeky” classroom, with Star Trek ephemera, visible electronics equipment, and action figures present in the classroom (left image, University of Washington).  The other classroom offered was a more neutral space, with plants, art pieces, and water bottles around the classroom (right image, University of Washington).

How much of a difference can a physical space make?  As it turns out, quite a lot!  When asked about their interest in taking the course, students seeing a stereotypical classroom showed typical gender disparity in their interest.  When viewing the neutral, non-stereotypical classroom with the plants and water bottles – that gap in interest disappeared.

Moreover, students sense of belonging in the course showed a similar trend.  This led Dr. Cheryan and her team to coin a term for this: ambient belonging.  She defined ambient belonging as how one senses a “fit with the material components of an environment and with the people who are imagined to occupy that environment.”

This concept of ambient belonging struck a chord for me personally and for many in the audience.  Spaces reflect those they are designed for, whether that be literal physical access for people with disabilities, comfort by seeing images of people with shared identities for people of color, women, and LGBTQ folks, or the way that objects can invite a particular set of cultural norms, be that Star Trek figurines or exercise equipment.

One listener invited those attending the talk to think about ways that we can teach our kids and students to observe their sense of ambient belonging and use that awareness as a tool of empowerment.

I am inspired to bring this to the leadership at my school, where we are in the process of planning and building a new middle school building.  I also feel challenged to think about the ways my classroom may be a more or less welcoming space to specific students based on their identity, values, and socialization.

When discussing insufficient early experience in computer science, physics, and engineering, Dr. Charyan discussed the advantages of requiring those types of courses instead of making them optional.  When students are not required to take classes in a particular STEM field, students who don’t see themselves reflected in the work of those fields based on stereotypes or their own conceptions often opt out.  They are not exposed to the real work of the discipline, nor are they able to develop the groundwork for further learning if they were to discover an interest later in their education.  This is certainly true at my school, where computer science and physics are both electives, and no explicit engineering course is consistently offered.

IMG_7080

As the conclusion to her talk, Dr. Charyan gave advice that she would give to her own high school, a STEM-focused research school at the University of Indiana.  Of the suggestions she provided, the one that struck me most was the last – send students to colleges with good cultures within STEM.

I attended a small private liberal arts college well-known for being a hotbed of social activism from its very founding.  Yet when I studied Economics as an undergrad, an out queer person and a person perceived as female in an overwhelmingly cis male department, I found very little empathy or acknowledgement from faculty that I was in a challenging position.  The one tenured female faculty member in the department gave me the same advice she had been given, that had enabled her to survive in a cutthroat, male-dominated field – suck it up.  No acknowledgement of the challenges of the culture, no conversation about disparities was ever posed as even a possibility, even in one-on-one interactions with faculty.

It can be easy to say that in order for students to survive in the broader world, they need to be prepared for the reality of white masculine culture and the disparities faced by women, people of color, and people with disabilities in STEM fields.  It is crystal clear, however, that this focus on “toughing up” is not only ineffective, it sets talented future scientists on the path to burnout and failure.  Identifying healthy, equity-focused school cultures and sending our students to those institutions is the solution to success, not telling them to suck it up and learn to live among the powerful.  Instead, taking that biased “reality” and queering it to our own ends is one step on the path to equity.

Science Characters, Part 3: Reflections

Doing this identity-related work with my students was completely transformative for me as a teacher.  An incredible amount of effort went into not only the preparation for each lesson, but also the day-to-day reality of discussing challenging and often-taboo topics with students like race, ability, and class.  Being fully present and engaging in that kind of discourse was exhausting, but it also brought our community closer together.

Part of what inspired me to do this project was an article I read in Quartz magazine, “There’s a way to get girls to stick with science–and no, it’s not more female role models.”  A female science journalist, Shannon Palus, writes about the discrimination and lack of welcome she and others have experienced when trying to go into scientific research, and how role models or pink-ified experiments don’t change that discrimination from having an impact on women’s day-to-day experience in STEM fields.  The solution?

“In a study of 7,505 high school students, Geoff Potvin, a researcher at Florida International University, measured the effect of a handful of common interventions on students’ interest in physics: single-sex classes; having role models including women physics teachers, women guest speakers, and women who made contributions to the field; and discussing the problem of underrepresentation itself. Of these efforts, only the last one succeeded in making high-school women more interested in pursuing a career in the physical sciences.”

Talking about it.  Being open about the fact that discrimination exists, that it is pervasive, and that it is surmountable – but certainly not over – was the only intervention that Potvin found to be effective in making women more interested in pursuing a career in physical sciences.  Ultimately, that was one of the major goals of implementing this project in my class, and I think I succeeded in having those conversations and putting discrimination out in the open as a topic for interrogation and reflection.

I was lucky enough to have teachers who were willing to have hard conversations about sexism, racism, and heternormativity when I was in high school.  I thought of them often as I entered these discussions with my own students, each of which was completely different and vulnerable and scary. I doubt my high school teachers had many role models that showed them how to navigate the waters as teachers and advocates for social justice.  I admire their bravery so much more in retrospect, and it gave me hope that the work I am doing now will have a real impact on the lives of my students.

There were a lot of unexpected benefits that emerged as a result of doing this project.

  • Students with a strong sense of justice had an opportunity to really shine.  Many of the kids who did the best job articulating how racism, sexism, and other discrimination operates in the world and affects STEM outcomes were students that hadn’t found great connections in my class in the past.
  • Students learned a LOT about different kinds of STEM careers while doing their research.  If you had asked my students beforehand what a virologist or a neurobiologist were, they would have had no idea – but after reading through and hearing about different scientists’ stories, they are much more aware of the diversity of STEM careers available in the world!  In particular, students got very excited about nanotechnology, roboticists, and different forms of medicine that they had not been aware of before.
  • As a queer and trans* person, I gained scientific role models that share my identity, something that I had never had the opportunity to study before.  I found it a very emotional and opening process to read about the stories of other people in STEM who have overcome the stigma facing folks like us – especially trans* folks, whose lives can literally be put on the line for being open about our experiences.
  • Students easily connected issues facing underrepresented groups in STEM to their own experiences of being students and young people in our society.  We had many candid conversations about the relationship between students and adults at our school, and how that is related to how power operates in the world more generally.  They had lots of questions about how to address injustice when it is coming from teachers and other adults – and it led to some cool initiatives and conversations with those adults in our community.  These things continue to come up, and I hope this opened a pathway for kids to express when and how they are uncomfortable with how things are being run in a particular classroom or space.

I really loved doing this work, and hope that after reading about it you will try something similar in your own work as educators, parents, and mentors of children.  I never could have imagined the impact this had on me and my classroom – and this is really work that has to be done one classroom at a time.

Doing something similar?  Want to chat?  Feel like engaging with this more deeply?  Please please reach out – you can email me at ltravis@seattleacademy.org.

SC quick links:  Part IPart IIInspiration project

Science Characters, Part 2: Learning and sharing STEM stories

In addition to studying the implications of how socialization and institutional bias affect outcomes in STEM fields, students were asked to choose a particular scientist, engineer, or mathematician to study and share out their story to the broader school community.

To help students identify people whose stories are lesser-known, as well as encourage them to think outside the usual boxes of who makes an underrepresented scientist, I made a list of scientists they could study, linked to here.  When making the list, I prioritized a couple of factors:

  • I prioritized people who are still living, so that students could reach out to them if they wanted to, as well as understand that scientists are still doing important and groundbreaking work even today.
  • Within each underrepresented group, I made sure each list was less than 50% cisgender men.  There is no list of women who don’t have a different identity from the list, even though women continue to be underrepresented in most STEM fields.
  • These lists are by no means comprehensive (and there is no way that I could make them so!!).  I tried to give my students a rich, diverse, but manageable group of people to choose from when doing their project.

Students’ projects were awesome.  They created a 3-5 minute presentation for the class, as well as a small poster that could be put up around the school.  The rubric I used to grade them asked them to not only learn about the scientist’s life and story, but also examine the character traits that helped them succeed.  I used the VIA Classification of Character Strengths tool to help kids identify the specific ways that their chosen STEM innovator met success.  The goal was for students to be able to identify specific ways that any person could succeed in STEM, regardless of their identity or inherent ability.

Here is a bulletin board that shows off students’ work.  (My curation notes here.)  You can tell that students took this project seriously and put in their best effort to share their scientists’ stories!

Image-1

SC quick links: Part IPart IIIInspiration project

Science Characters, Part 1: Who Does Science Changes What Science Does

This post outlines a unit I did with 6th grade students at an independent school about the intersections of identity and STEM.  It is built off of the work Moses Rifkin does with his 12th grade physics students at University Prep – read more about his work/experiences here (Part 1 of 4)!

The 6th grade curriculum I inherited included one brief unit about the history of science, which covered the main scientists credited with different models of the atom.  Students learned about 5 different models of the atom, 4 of which were named after DWGs (dead white guys).  They acted out their research about those atoms in skits that mostly perpetuated misconceptions about both who does science (DWGs) and how science is done (in a 5-minute period of time, with no obstacles to progress, by DWGs in lab coats).

This year, I wanted a change.  Inspired by Rifkin’s work and the work of many inspiring scientists, engineers, and mathematicians from groups underrepresented in STEM fields (science, technology, engineering, and mathematics), I set out to create a unit that would simultaneously give kids more role models that weren’t DWGs in STEM and give them a clearer picture of how science works in real time.

“Science Characters” was a project in two parts.  One part was students learning about how socialization and institutional bias, among other factors, lead to inequalities in different groups’ representation in STEM.  The other was students doing individual research on someone in STEM who is from an underrepresented group and share out their work with the broader community.  When I say underrepresented group, I mean any group that, as a result of lack of privilege and power, is less-represented in STEM fields than in the broader U.S. working-age population.  In this project, I focused specifically on people with disabilities, people of color, LGBTQ people, and women, though there are many groups that find themselves on the margin in STEM.

Before the unit began, as a part of a larger in-class survey, I asked students a few questions about science careers and to list three scientists they could think of off the top of their heads.  Here are the results from that survey (excluding kids’ friends and family, whose identities are unknown): 95.5% were white, 4.5% people of color; 81.8% were men, 8.2% were women, and 0% were non-binary identified; 90.9% were presumably straight & cisgender, 9.1% were out as LGBT and/or Q; and 97.7% were able-bodied, 2.3% were people with disabilities.

This created a great launching point for our class conversation about why certain groups come to mind quickly when thinking about “a scientist.”  On the first day of the unit, I talked about this with statistics about who is in the STEM workforce compared with the U.S. workforce as a whole.  I also shared my own personal story in STEM/academia in general.  As a trans person, I started my work in STEM perceived as a woman; now that I am seen as male, I get much more respect from my colleagues and especially my students.  I also talked about my experience as a white, able-bodied, college-educated person in STEM, and the privilege that comes along with those identities.  Here’s a link to the slides I used in case you want to create something similar.

Later that week, I asked kids to have a discussion in class about some of the reasons they thought certain groups continue to be underrepresented in STEM, even in 2016. It’s important that we had strong class norms going into the unit – speak from your own experience, assume good intentions/at with good intentions, and impact and intention are not the same.  Kids were reminded of these again and again – and as a facilitator, it was important to help guide conversations towards these goals.  Practicing talking as a group respectfully about things like race, ability, and gender explicitly was really helpful for future conversations about specific strategies to work towards greater equality, and kids had lots of incredible stories and insights to share.

The next week, kids were asked to watch this TED Talk: “The Future of STEM Depends on Diversity” by Nicole Cabrera Salazar.  She uses many examples that really spoke to kids and stuck with them. Cabrera Salazar breaks down the issues facing underrepresented groups when entering STEM into two broad categories: 1. Institutional bias, which comes from bias being magnified by larger structures like corporations and schools, and 2. Socialization, which comes from interactions with elders and peers and how one is encouraged (or discouraged) to act as a scientist.

From this, I led one lesson on how we can address each issue.  For institutional bias, I gave kids examples of how folks in STEM have challenged broader structures of inequality by thinking innovatively and using diverse strategies.  These organizations, mostly located in Seattle where I teach, are summarized in these slides/articles that I had kids read about in groups and then present out to the class.

For addressing socialization, I used the Speak Up! curriculum from Teaching Tolerance (including these videos that were originally meant for teachers but are great for use in the classroom) in giving kids tools to address hurtful and limiting comments they might hear from peers or even teachers.  This led to many fruitful conversations about productive responses to others’ biased ideas, and many kids were brainstorming using real-world examples.  This is a highly pertinent and challenging topic in middle school; I feel like I could teach this every week from a different angle and it would be productive and useful.

SC quick links:  Part IIPart III